Glucose phosphorylation is required for insulin-dependent mTOR signalling in the heart.

نویسندگان

  • Saumya Sharma
  • Patrick H Guthrie
  • Suzanne S Chan
  • Syed Haq
  • Heinrich Taegtmeyer
چکیده

OBJECTIVE Insulin regulates both glucose uptake and postnatal cardiac growth. The anabolic effects of insulin are mediated by the mammalian target of rapamycin (mTOR), an evolutionarily conserved kinase which is also a convergence point between nutrient sensing and cell growth. We postulated that mTOR signalling in the heart requires the metabolism of glucose. METHODS We interrogated the insulin-mediated mTOR signalling pathway in response to different metabolic interventions regulating substrate metabolism in the isolated working rat heart and in isolated cardiomyocytes. RESULTS Although insulin enhanced Akt activity, phosphorylation of mTOR and its downstream targets (p70S6K and 4EBP1) required the addition of glucose. Glucose-dependent p70S6K phosphorylation was independent of the hexosamine biosynthetic pathway, the AMP kinase pathway, and the pentose phosphate pathway. However, inhibition of glycolysis downstream of hexokinase markedly enhanced p70S6K phosphorylation. Furthermore, 2-deoxyglucose activated p70S6K suggesting that phosphorylation of glucose is required for carbohydrate-mediated mTOR signalling in the heart. Lastly, we also found enhanced p70S6K phosphorylation in the hearts of diabetic rats. CONCLUSION Phosphorylation of glucose is necessary for insulin-dependent mTOR activity in the heart, suggesting a link between intermediary metabolism and cardiac growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Integrated Insulin-mTOR Signalling Network -Diabetes Perspective

The regulatory action of insulin on the blood glucose homeostasis is mediated by the Insulin signalling pathway. To quantify this regulation, we have integrated the models of Insulin secretion, insulin signalling, mTOR signalling and blood glucose uptake by various tissues. We have analyzed the effect of perturbations in the integrated insulin-mTOR signalling pathway on blood glucose levels. Th...

متن کامل

Glucose exerts a permissive effect on the regulation of the initiation factor 4E binding protein 4E-BP1.

The eukaryotic initiation factor 4E (eIF4E) binding protein (4E-BP1) interacts directly with eIF4E and prevents it from forming initiation factor (eIF4F) complexes required for the initiation of cap-dependent mRNA translation. Insulin and other agents induce the phosphorylation of 4E-BP1 at multiple sites, resulting in its release from eIF4E, and this involves signalling through the mammalian t...

متن کامل

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

A temporal switch in the insulin-signalling pathway that regulates hepatic IGF-binding protein-1 gene expression.

Insulin regulation of hepatic gene transcription is a vital component of glucose homeostasis. Understanding the molecular regulationof thisprocess aids the searchfor the defect(s) that promotesinsulin-resistant states, such asdiabetesmellitus. We havepreviously shownthat the insulin regulationof hepatic IGF-binding protein-1 (IGFBP1) expression requiresthe signalling proteins phosphatidylinosit...

متن کامل

O-13: Phosphorylation of 4E-BP1 Promotes Translation at The Oocyte Spindle

Background: Fully grown mammalian oocyte utilizes transcripts synthetized and stored during earlier development. In the mouse oocyte there are three forms of cap-dependent translational repressors: 4E-BP1, 4E-BP2, and 4E-BP3. The dominant form, 4E-BP1, inhibits cap-dependent translation by binding to the eIF4E translation initiation factor. Hyperphosphorylation of 4E-BP1 disrupts this inhibitor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 76 1  شماره 

صفحات  -

تاریخ انتشار 2007